Methods for slope stabilization

Course Slope Stability, Dr. Alessio Ferrari
EPFL / ENAC / GC section — Master semester 2 and 4 — 2024-2025



Causes identification

The causes and the failure mechanism should be understood before embarking on
corrective actions.

Failure mechanism

Causes
« External loads * Involved soils
* Rise in the groundwater level » Shape and position of the failure
« Erosion at the toe surface(s)
» Loss of soil strength (weathering) » Spatial and temporal evolution of
« Seismic action displacements

Usually more than one simultaneously



Slope stabilization
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Slope stabilization methods are based on
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Reduction of driving forces, D Increase in resisting forces, R

or both,
aimed to increase slope safety factor



Bishop simplified method

Effects of the remedial measures on the factor of safety
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Vertical load position influence on safety factor
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Neutral line theory (1)
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Neutral line theory (2)

After the application of the load, the factor of safety is:
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Neutral line theory (3)
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Neutral line theory (4)

Undrained condition Drained condition
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Neutral line theory (5)

The application of the vertical load is:

Bad in short term,
but beneficial In
Always adverse long term Always beneficial

e Centre of rotation

—

Drained neutral point

a=0
Undrained neutral point




Cut and fill operation

(a) Flattering overall slope

(d) flattering overall slope

.




Soil Nailing reinforcement
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Soil Nailing reinforcement

Passive steel bar mobilized if movement occurs

POTENTIAL SLIDING MASS

SLOPE STABILIZATION

Ambrason, et al., 2002



Soil Nailing reinforcement
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Step 1 Excavate a small cut
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Step 2 Drill nail hole
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Step 3 Install and grout nail
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Soil Nailing reinforcement

Step 4. Place temporary facing
(shotcrete, reinforcement, bearing
plate)

Step 5. Construction of
subsequent levels

Step 6. Place final facing on
permanent walls




Retaining structure

Row of

Are used when a cut and
fill is required but there is
not sufficient space
available for a slope.

Transferring loads into the

_ _ Gravity
intact soil or rock beneath.

retaining
structures

Appropriate only for shallow
slides



Rows of piles

Forces acting on a pile
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Gravity retaining structure
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Rows of piles
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ROWS OF PILES

Niw
ROCK X |

!
|
'
'

e Emen

Use of driven-piles to stabilize slopes (Zaruba and Mencl, 1982)

Drilled piles must be embedded deeply into a firm ground stratum to provide
resistance against the lateral forces transmitted from the unstable soil mass. The
depth of the piles should pass through the potential critical slip surface



Anchors
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Section of tieback to correct slide condition on New York Avenue in Washington DC
(Ambrason et al. 2002).



Anchors

BEARING PLATE
REINFORCED SHOTCRETE
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Tieback detail, (Ambrason et al., 2002)




Anchors
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Anchors

shear resistance S
Action on a sliding block

Anchor force

normal effective force resultant
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Bishop simplified method
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Drainage

Drainage effect

Drainages fixe pore water pressures in some zones of the slope (typically pwp = 0 by
putting the water in contact with the atmosphere).

These fixed pwp correspond to a change in the boundary conditions that will affect
the overall pwp distribution.

The changes in pwp do not necessarily correspond to changes in the degree of
saturation (e.g. soil can remain saturated when pwp are < 0).

The efficiency of a drainage system must always been assessed in term of pore water
pressure changes (not flow!)



Project process

Settlements

Stability Analysis

A4

Initial pore water
pressure distribution

A4

Installation drain

Reduction in pore
water pressure

Initial factor of safety,
Fo

Increased factor of
safety, F1



Drainage classification:
» Shallow drains

i Qverland flows intercepted by cut-off Trench drains highly effective
o . Deep drains drain or extensions to main downslope —___ tn shaliow slides or slope
trench drains SO wash J

-

Perched water table
.4 intercepted by tunnel

Run-off captured by chevron {top) or
herringbone pattern (lower) secondary

drains o

Qutfall details need care
and manholes at breaks
in slope if pipework
is installed in trench
drains

ey
e
ety

Bored drains lead into shafts or
tunnels or could be bored from ground
level at the toe of the siide

Vertical sand drains operate by . .
draining pore pressures into Drainage type:

underlying permeable strata Trench drains

Sand drains connect to drainage blanket to e Horizontal drains

eliminate construction pore pressures under . .
fill. They can, but do not need to be fully e Vertical drains

penetrating.

Different drainages (Bromhead, 1986) * Drainage gallery



Trench drains
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Superficial and deep trenches with only main branches (Pun & Urciuoli, 2008)



Trench drains
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Discharge pipe

Pun & Urciuoli 2008
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2D water pressure analysis of trench drains
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2D water pressure analysis of trench drains

Ground surface
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Trench drains simplified design

From stability analysis, define the

h value that provides the desired
safety factor

Define the drain depth H (based
on slip surface depth)

Compute n = (D/H)

Enter in the diagram with the
h/H value

Intersect the curve with the
evaluated n

Obtain Rs value on the x-axis

Calculate the spacing between
drains (s) for the specific
permeability conditions
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permeable base solution

at drain inveri lavel
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) a

Design charts, set of solutions obtained from finite-element
methods (Bromhead, 1986)

Rg

n = effective stratum depth / effective drain depth = D/H

R, =+/(k,/k,)s/H



Horizontal Drains

- TR
SN

/ Perforated or slotted PVC

pipe inserted in drilled hole

100 to 300 ft
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Geotextile ~ PVC slotted pipe

Duncan et al., 2014

Protection pipe . _ _
Horizontal drains can be drilled

directly into a hillslide (when slope
1s steep) or into a reteining structure.
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Scheme of a horizontal drain (Pun & Urciuoli, 2008)



Wells

Before drawdown
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After drawdown
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Water level between drain wells (Bromhead,1986)
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Jointed bedrock

a) Excavation stabilized with five-stage well point system;
b) excavation stabilized with deep wells and well points. (Bromhead,1986)



Vertical drains

Superficial drainage network

N

Discharge pipe

Horizontal drains

/7 Well with

500 . )
horizontal drains

380

Drain wells with and without

O horizontal drains: map and section

Well without (Pun & Urciuoli, 2008)

horizontal drains



Vertical drains

Earth backfill
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Drain wells used to stabilize four landslides near Seattle
(Bromhead,1986)



Drainage gallery

h, =COSt 5l » (d)

(a) Initial piezometric level, (c) at time ¢, (e) at £=c0 and corresponding settlments,
Airo Farulla & Valore, 1994



Drainage gallery
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Drainage Gallery for the stabilization of a mining dump. After Aird Farulla & Valore, 1994



La Frasse landslide

Landslide

Cretaceous

Grande-Eau
river

La Frasse 3D geological model. View from S-E.
Commend et al. 2006

Location of the La Frasse Landslide.
Tacher et al., 2005



La Frasse landslide

Length: 2000 m
Wide: 500 — 1000 m
Thickness: 50-110m
Surface : plus de 1 km?
Volume :

active : 42 mio m?

total : 73 mio m?
Slope :

upper part: 11°

upper part: 20°

Average speed:
upper part : 10-15 cm/year
lower part : zone «+» : 15-30 cm/year
zone «++» : 40-60 cm/year

Location of some representative boreholes and total thickness of the landslide mass (active plus stabilised).
Tacher et al., 2005



Landslide
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Drainage gallery concept

Location of the projected
drainage gallery
Matti, 2008
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La Frasse landslide

Wells

Gallery and pipes schematic rappresentation

Displacement field with and without the

gallery Tacher et al., 2005



Inside of the la frasse drainage gallery
http://www.vd.ch/

Measures of surface movement of the landslide during the period 2006-2014

Swiss Geo Testing Sarl
Geothermie et Géomecanique

Glissement de La Frasse - Commune d'Ormont-Dessous (le Sépey)
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0.10
0.00 = e
-0.10 [
-0.20 \
-0.30 \
-0.40 '-ﬁu Paosition ROBOVEG \
050 - 1 Prismes (réflecteurs)
E ® Forages 2006
EJ -0.60 I —Point 1 =—Point 2 Point 3 Paint 4 —Point 5
m—Point 6 = Point 7 —Point 8 Point 9 s Point 10
-0.70 P 0INET 1 Point12 Point13 Point14

-0.80

—~\

L

-0.90

Date
1

2006 2007 2008 2009 2010 2011 2012 2013 2014




